

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	SudokuStudyLib 1.0 documentation

SudokuStudyLib

[image: _images/logo.jpg]
This is a python library for studying logic by solving Sudoku and learning the programming of python language.
Sudoku is a kind of puzzle game. it is one of the best way to learn logic, and at the same time, the Python language is one of the best computer language to learn logic.
So, if we can combine these two kinds of tools to teach children or young men to learn logic, it will be perfect. This is why the project be done and going to.

Welcome to the Purest World of Human: Sudoku and Logic

Contents:

	Welcome to SudokuStudyLib’s documentation!
	Install

	Usage

	The base knowledge of sudoku
	A classic sudoku

	Rules

	How many possible puzzles in a 9x9 sudoku

	What is logic?
	Logic is the most important for a person starting to discover the world

	Learning Logic by Solving Sudoku

	Learning Logic by Learning Python Programming

	Features of this Library

	Courses
	Who are suitable for these courses

	First Step: Learn solve a sudoku by hand

	Second Step: Learn to find methods to solve a sudoku

	Third Step: Learn to write python code to implement their methods

	How to make a simulator environment in Python to solve a sudoku
	What is a Class? and an Object?

	What is a Property?

	What is a Method?

	Game Defined File

	Start Programming to Solve a Sudoku
	Solving Environment

	Solving Process

	Some Basic Methods

	How to implement a method?

	Package: Sudoku - the OOP method

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Robert J. Hwang.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SudokuStudyLib 1.0 documentation

Welcome to SudokuStudyLib’s documentation!

This is a tool and library for studying Logic and Python programming. It includes two packages, one is Sudoku, and another is Matrix. The Sudoku is an oop approaching library,
while the Matrix is a traditional function processing library.

This library and document are major for Soduku package, the Matrix package is just a reference for a traditional programmer.

Install

You can use pip to install the library:

pip install SudokuStudyLib

and you can clone the project from:

https://github.com/RobertOfTaiwan/SudokuStudyLib

When you has installed, it will contain two packages, sudoku, and matrix. The following is the file structure:

[image: _images/p1.png]

Usage

	OOP method: sudoku, in the test.py:

from sudoku import *

to solve a sudoku defined in data directory
solve("m18.data")

pass

to solve a sudoku and just using the methods which level <= 15 and if can't solve, don't use guess method
solve("m3.data", level_limit=15, use_try=False)

pass

to solve a sudoku with emulator methods and print the steps
solve("m12.data", use_emu=True, print_step=True)

pass

to solve the world's best difficult sudoku
by default method
solve("m10.data")

by computer's try error
try_error(None, file="m10.data")

by all methods but not using human guessing, it can't solve the sudoku
solve("m10.data", use_emu=True, use_try=False)

by basic human methods and guess
solve("m10.data", level_limit=10, use_try=True)
solve("m10.data", level_limit=3, use_try=True)

	Traditional method: matrix, in the test.py:

from matrix import *

solve it directly
m, n, p = main("m6.data")

solve it by limit methods, it can't solve the sudoku
m, n, p = main("m3.data", methods=8)

set the limit methods to the 10, and it can solve the sudoku
m, n, p = main("m3.data", methods=10)

using the try error's method to solve the best difficult sudoku in the world
m, n, p = TryError("m10.data")

 Copyright 2014, Robert J. Hwang.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SudokuStudyLib 1.0 documentation

The base knowledge of sudoku

Sudoku is a kind of puzzle game. It is one of the best way to learn logic, and at the same time, the Python language is one of the best computer language to learn logic.
So, if we can combine these two kinds of tools to teach children or young men to learn logic, it will be perfect. This is why the project be done and going to.

A classic sudoku

You can study what and how is sudoku in Wiki Page: http://en.wikipedia.org/wiki/Sudoku

	The following is a classic sudoku:
	
	and the following is the solution for it:

	[image: sudoku_init]
	
	[image: sudoku_result]

Rules

The basic rules to solve a sudoku is very easy:

	Put the number of 1-9 to every line(including x-way and y-way) and every box.

	every line and every box can’t duplicate of the number of 1-9.

How many possible puzzles in a 9x9 sudoku

If we put the first number in a the position (1, 1), there are must have 9 numbers can be selected to put in.
Then we put the second number in the postion (1, 2), there are must have 8 numbers can be selected to put in. So, and as it going on, we can write down the possible numbers we can select in
every position:

	9!
	6!
	3!
	6!
	3!
	1!
	3!
	1!
	1!

	9
	6
	3
	6
	3
	1
	3
	1
	1

	8
	5
	2
	5
	2
	1
	2
	1
	1

	7
	4
	1
	4
	1
	1
	1
	1
	1

	6
	3
	1
	3
	1
	1
	1
	1
	1

	5
	2
	1
	2
	1
	1
	1
	1
	1

	4
	1
	1
	1
	1
	1
	1
	1
	1

	3
	1
	1
	1
	1
	1
	1
	1
	1

	2
	1
	1
	1
	1
	1
	1
	1
	1

	1
	1
	1
	1
	1
	1
	1
	1
	1

So the possible combinations are 9!*6!*3!*6!*3!*1!*3!*1!*1* = 4,514,807,808,000

if we use python to caculate it:

>>> def n(x):
 if x==1:
 return 1
 else:
 return x*n(x-1)

>>> n(9)*n(6)*n(3)*n(6)*n(3)*n(1)*n(3)*n(1)*n(1)

About the mathematics of sudoku, you can get it at Wiki, http://en.wikipedia.org/wiki/Mathematics_of_Sudoku

 Copyright 2014, Robert J. Hwang.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SudokuStudyLib 1.0 documentation

What is logic?

Logic is the most important for a person starting to discover the world

The basic logic is dichotomy, is True or False in human language, or is 0 or 1 in computer language. It is the smallest and simplest classification which human can recognize
and communicate with each other. So learning logic for children and young men is very important, because this is the base of all knowledge, and the base of all religion.

If you can’t judge a thing is right or not, is existed or not, in one certain view point, you don’t know the world, as you don’t know yourself either.

Learning Logic by Solving Sudoku

Learning logic can be a very happy thing if we teach it as a game, and Sudoku is the one. There are several good reasons to study logic by Solving sudoku:

	Its rules are so simple, everybody can know it in 5 minutes,

	It is so complicated that have more than billions of combinations.

	It can be separated into different difficult levels easily.

Learning Logic by Learning Python Programming

Learning a computer language is the nature way to learn logic. Python is a interpreter script language, you can get every resource from https://www.python.org/.
I recite a period of Python FAQ<https://docs.python.org/3/faq/general.html> about for the beginning programmers:

	Q:

	Is Python a good language for beginning programmers?

	A:

	Yes.

It is still common to start students with a procedural and statically typed language such as Pascal, C, or a subset of C++ or Java. Students may be better served by learning Python as their first language. Python has a very simple and consistent syntax and a large standard library and, most importantly, using Python in a beginning programming course lets students concentrate on important programming skills such as problem decomposition and data type design. With Python, students can be quickly introduced to basic concepts such as loops and procedures. They can probably even work with user-defined objects in their very first course.

For a student who has never programmed before, using a statically typed language seems unnatural. It presents additional complexity that the student must master and slows the pace of the course. The students are trying to learn to think like a computer, decompose problems, design consistent interfaces, and encapsulate data. While learning to use a statically typed language is important in the long term, it is not necessarily the best topic to address in the students’ first programming course.

Many other aspects of Python make it a good first language. Like Java, Python has a large standard library so that students can be assigned programming projects very early in the course that do something. Assignments aren’t restricted to the standard four-function calculator and check balancing programs. By using the standard library, students can gain the satisfaction of working on realistic applications as they learn the fundamentals of programming. Using the standard library also teaches students about code reuse. Third-party modules such as PyGame are also helpful in extending the students’ reach.

Python’s interactive interpreter enables students to test language features while they’re programming. They can keep a window with the interpreter running while they enter their program’s source in another window.

Features of this Library

There are so many sudoku’s puzzle games and studying in the world. Some are made for fun, some are for the studying of mathematics, while this library focus on logic learning.
And the logic mainly is in human view, not in computer science view. So, there are some features in this package:

	This is mainly for studying logic for human.

	It is NOT to plan to be a normal programming courses.

	It is NOT to plan to be a studying of serious mathematics.

	The methods of solving a sudoku are mainly in a human view, NOT in computer science view.

	Let people to find their own methods to solve a sudoku, and name these methods in their own way. (This is not in this package, but should be arranged this in the courses.)

	Let people learning python to implement their own methods.

	Studying OOP programming to solve a sudoku. OOP method can be treated as human behavior.

 Copyright 2014, Robert J. Hwang.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SudokuStudyLib 1.0 documentation

Courses

We can arrange these courses as a sudoku summer camp. We can prepare 1-6 different level sudokus. The learners don’t need to learn all levels.
The purpose of these courses is NOT to teach all solving methods of sudoku, its purpose is logic learning. So, we can let different learners have their suitable target to learn.

Who are suitable for these courses

Every one who have studied in an elementary school for three or four years.

First Step: Learn solve a sudoku by hand

	Hours:

	14 hours, 2 hours/day, 7 days

	Purpose:

	
	Find the suitable level for every learner

	Learn the basic computer knowledge

Second Step: Learn to find methods to solve a sudoku

	Hours:

	14 hours, 2 hours/day, 7 days

	Purpose:

	
	Nameing the method that they have found a model to solving a sudoku, and write down the description.

	Let them can express their methods to others.

	Learn the basic python programming by solving their home work, like solving how add all the value of 1 to 100.

Third Step: Learn to write python code to implement their methods

	Hours:

	14 hours, 2 hours/day, 7 days

	Purpose:

	
	Learning Object Oriented Programming(OOP) concept.

	Learning to use OOP to implement their methods.

 Copyright 2014, Robert J. Hwang.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SudokuStudyLib 1.0 documentation

How to make a simulator environment in Python to solve a sudoku

We think classes defined is the most difficult for learner in the OOP method of programming. So in these courses of learning to solve sudoku,
we don’t explain how to make a class, property, and methods in detail. But just make a explanation of the existed classes, properties and methods in this library to learners.
So we can explain these data structures as a simulator environment to solve a sudoku like a human being.

We can first image that there are 9x9 houses in a beautiful valley, and they are build like:

[image: _images/p4.png]

An Imagined World

There are 9 countries, every country has 9 people. They decide to live together in this beautiful valley. And there are 9x9 houses, They want to let every people live in one house, and every X-way line, Y-way line,
and every 3x3 box include all countries’ people. And if so, they can say themselves are a real united group in the world, can you help them?

and then we can start to solve the wondeful world for these people...

What is a Class? and an Object?

Class is collective name for a group of objects which have same behaviors, features, forms. So, animal can be a class name, and elephant is an kind of object of this class.

An object is thing which belong a class or multi classes.You can treat an object is an entity of a class, like human is a class, but you is an object, an entity which belong human class.

Depend to the domain which we want to approach,or to define, we will define some different classes to describe the same objects. Like if we want to study a city bioecology system, we may define an
animal class, that contain some people, some pets, and so on... But when our domain is to make a phone book application, we may define a person class that contain some people, but no pets,
except our pets have a cell phone too.

In this sudoku solving library, we define the following classes:

	Number Class:

You can treat every number as a different man, there are 9 countries, and every country has 9 men. So we can treat the Number Class as a Country Class.
Every country has their ID, here is 1-9, and every country would record the positions where their people live in this valley.

	Point Class:

Point is a house here. It indicate that there is empty or not, if it is not empty, which country people lives there? if it is empty, which counties’ people can live here?

	GroupBase Class:

GroupBase is group of X line, Y line or a 3x3 Box. This is base class of Box, lineX, lineY. It indicate which houses are belong to him,
how many people have lived in this group? and which counties’ people still not live in this group?

	Box Class:

Every 3x3 block. Every box has its id, from left to right, from top to down, it is assigned 1-9, as the following picture:

[image: _images/p5.png]

	lineX Class:

Every x-way line. Every x-way line has its id, from left to right, it is assigned 1-9, as the following picture:

[image: _images/p6.png]

	lineY Class:

Every y-way line. Every y-way line has its id, from top to down, it is assigned 1-9, as the following picture:

[image: _images/p7.png]

	Matrix Class:

Matrix Class is the WORLD of a sudoku game. It is the beautiful valley, including 9 countries, every country have 9 people, there are 9x9 houses for all these people.

What is a Property?

Property is in a class to declaim what it cotain and how they look like or their conditions. Like a person class, may have these properties of how much money he have, how many children he have,
, and first child is boy or girl, how old are them?

The following are the major properties of all classes in this libryary:

	Number class:

	v: the id of a country, it is 1-9.

	p: the list of the houses which these country people have lived in

	filled: how many people have lived in a house

	Point class:

	x: the x-way postion of this house

	y: the y-way position of this house

	v: which country people has lived here, if it is still empty, its value is 0

	b: this house belogn which 3x3 box

	GroupBase class:

	idx: the id of this group

	p: the list of the houses which belong this group

	filled: how many people have lived in this group

	possible: the list of country id which have not lived in this group

What is effects?

Effects of a box are the 4 boxes which the same direction of x or y with it. So, effectsX are the boxes that have the same x-way direction,
while effectsY are the boxes that have the same y-way direction of it.

	Box class:

	All GroupBase Properties

	effects: the box id list of a box’s neighbors

	effectsX: the box id list of a box’s neighbors which in x-way direction

	effectsY: the box id list of a box’s neighbors which in Y-way direction

	lineX class:

	Having the same properties as GroupBase

	lineY class:

	Having the same properties as GroupBase

	Matrix class:

	p: A two dimention of point(house), from p[0][0] to p[8][8] to present all the houses in this valley.

	lineX: A list of x-way line of the houses

	lineY: A list of y-way line of the houses

	b: A list of 3x3 box of the houses

	n: A list of Country.

	filled: how many people have lived in a house now.

What is a Method?

Methods are the behaviors of a class or an object. For example, if we define a radio class contain several buttons, then we should define the methods when some button has been pushed.
It may start to receive a program from a station, or record a program into CD, etc...

The following are the major methods of the classes in this library:

	Number class:

	setit(p1): when a country’s people find a house(p1) to live, this method will be called

	Point class:

	can_see(p1): to check a house can see another house(p1) or not?

	can_see_those(posList): to check a house can see a list of houses, and return the houses list which it can see them.

Note

What is “SEE”?

the houses in the same x-way or y-way line, or in the same box, of a house, this means that this house can SEE all of them.

	GroupBase class:

	allow(v): check the group can allow the country people(whose id is v) to live or not?

	get_num_pos(v): get where the people live in this group who is the country people(whose id is v), if there is no this country’s people, it will return None.

	count_num_possible(count): get the countries’ id and houses, which are empty now, and are possible to be assigned to a certain country people, and the houses are equal to the number(count)

	get_all_pos(method): get all houses in this group, if method=”a”; if method=”u”, get all empty houses, if method=”s”, get all not empty houses.

	Box class:

	All GroupBase methods

	get_group_number(num): To Check the num in a box’s would form a Group Number or not.

Note

What is “Group Number”?

Group Number is in a box. Those houses in this box can and only can allow some country’s people, and these houses in a same line(x-way line or y-way line),
then we call these houses form a Group Number, We don’t know which house is the country’s people should live finally,
but we know the other houses in this line will not allow the same country’s people to live.

	lineX class:

	Having the same methods as GroupBase

	lineY class:

	Having the same methods as GroupBase

	Matrix class:

	get_all_pos(method): if method=”a”, get all houses; if method=”u”, get all empty houses; if method=”s”, get all houses where have lived people

	sort_unassigned_pos_by_possibles(possibles): get all empty houses which are only allowfd for [possibles] countries people, if possibles == 0, it will get all empty houses,
and sorted by the possiles from low to high.

	can_see(p0, method=”u”, num=0): get the houses which cand the house(p0), if the num!=0, mean get the houses only that are allowed the num country’s people.

	setit(x, y, v): Let the v country’s people live in the the house of the position (x, y).

	reduce(x, y, v): When a country people find a suitable house to live, then any empty house can SEE the house will reduce their possible countries people to live in.

	allow(x, y, v): check the v country people can live in the house of the position (x, y) or not?

	read(file): read the first defined that how many people and where they have lived in this valley.

Game Defined File

You can define sudoku’s game by giving x, y, v line by line in a text file.
like the following: its define file is in the [installed directory]/sudoku/data/

A sample define and its original and result matrix

	m3.data
	Original Matrix
	Result Matrix

	[image: _images/m3.png]

	[image: _images/origin.png]

	[image: _images/result.png]

 Copyright 2014, Robert J. Hwang.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SudokuStudyLib 1.0 documentation

Start Programming to Solve a Sudoku

When we have created a sudoku simulate world in the computer to solve a sudoku, now we should go ahead to implement some methods which we solve it in our own hands.
In other world, programming, is the stuff which we teach computer to do something that we have known it.

We first introduce the solve environment, then we will introduce some basic methods in this library.

Solving Environment

We create a function solve() to do the real solving a sudoku, and we make two exception classes, SudokuDone, SudokuError to capture event happen when we use methods to solve a sudoku.

Note

What is “Exception”?

Exception is an event defined, when the event condition has occurred, system will stop the processing and jump to the exception processing.
There are two major exceptions in the environment:

	SudokuDone:

	when the sudoku has been solved, will raise this exception

	SudokuError:

	when a country people to set in a house, but will break the rule of game, this will raise this exception

To let the environment know how many methods they can use to solve a sudoku, we create a class, SolveMethod. We use this class to create all methods in a BRAIN. We can treat this BRAIN like the god of this valley. Every time,
when people don’t how to choose their suitable houses, you can ask the god of valley, and it will give an answer, or it would say that, “I don’t know how to do either!“

Every method register in the Brain as a SovleMethod object, they have these major properties:

	fun: the function name of the method in python coding

	idx: the index of the method, from the easier to the more difficult, the brain will use this sequence to solve a game one by one.

	name: the name of the method

	level: the difficult level for human, using to count a game’s difficult level

Solving Process

The following is the flow chart of solve():

[image: _images/flowchart.png]

Note

WORK or NOT WORK?

A method works or not means that using this method can:

	let one or more people to find his or their own house,

	OR can let one or more houses know they are not allowed for some countries’ people.

In this flow chart, we know that:

	When a method works to set a person or reduce a house’s allowed people, it will return to the first method to restart solving the game.

	If a method can’t work to solve a game, it will give the game to the next method to solve it.

	And if final method can’t solve a game, it will go out and say “I can’t figure out this game, sorry!”

	In the solving process, if “Done” or “Error” event occur, it will go out.

Some Basic Methods

	fill_only_one_possible:

Find every house in a group, if there is only one house that one country people can live there, that house must let that country’s people to live in.

	fill_last_position_of_group:

When in a group(line or box) are only one left, it must allow only one country people to live there.

	check_obvious_number:

Check every country people who has lived in a house, and when these people observe other boxes which has yet not lived their country people,
can find an only house that allowed their country people or not?

	check_inobvious_number:

It is the same method as check_obvious_number, but some boxes’ houses are formed as a Group Number.

What is a Chain?

Chain is formed by two or above houses. In these houses, the amount of all different possible countries’ people are equal to the amount of the houses.
When a chain have formed, we can reduce the possible countries’ people from the other houses in the same group of this chain.

	reduce_by_group_number:

If there is a Group Number in a box, the empty houses of its same direction could be reduce the possible country people of this Group Number.

	update_chain:

As the houses have been lived some people, this would make some empty houses reduce some possible countries’ people.
And then these empty houses in a group(x-way line, y-way line, box) may form a Chain.

How to implement a method?

We could implement a method called check_obvious_for_a_country(m, num) method as an example:

 1 def check_obvious_for_a country(m, num):
 2 checked = list()
 3 for p1 in m.n[num].p:
 4 for b in m.b[p1.b].effects:
 5 possible = []
 6 if b in checked:
 7 continue
 8 else:
 9 checked.add(b)
10 if num not in m.b[b].possible:
11 continue
12 for p2 in m.b[b].p:
13 if p2.v != 0 or p2.can_see(p1) > 0:
14 continue;
15 if not m.lineX[p2.x].allow(num):
16 continue
17 if not m.lineY[p2.y].allow(num):
18 continue
19 possible.append(p2)
20 if len(possible) == 1:
21 m.setit(possible[0].x, possible[0].y, num, d="Obvious For a Country People")

	line#1, define a method, m is the world of this game, and num is a country id, here is 1-9.

	line#3, starts to find the all people who have lived in a house of a country.

	line#4-9, it scan all its effect boxes if those have not been checked.

	line#10-11, it the country people have live in this box, ignore it.

	line#12-19, check all empty houses in this box which allow the country’s people or not, if yes, put it in the Possible List.

	line#20-21, if the Possible List has only one house, it must can be assigned this house to the country’s people.

 Copyright 2014, Robert J. Hwang.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	SudokuStudyLib 1.0 documentation

Package: Sudoku - the OOP method

This is the oop method to solve the Sudoku.

	
class sudoku.sudoku.Box(idx, p)[source]

	Box

	
get_group_number(num, pos=, []notInLineX=None, notInLineY=None)[source]

	if the unassigned num in this box which it’s all possible positions have the same direction,
we call it as a GroupNumber

	
class sudoku.sudoku.Chain(numList, posList)[source]

	A chain of two and above positions which are not in the same box but in the same line
and can form a chain, means the possible number in this chain positions only can be filled in these positions

	
class sudoku.sudoku.GroupNumber(b, num, p, direction, idx)[source]

	Group Number in Box

	
class sudoku.sudoku.LineX(idx, p)[source]

	Line of X

	
class sudoku.sudoku.LineY(idx, p)[source]

	Line of Y

	
class sudoku.sudoku.Matrix(file='')[source]

	A Table of a Sudoku

	
allow(x, y, v)[source]

	Checking if the position x, y, can be set the value v

	
can_see(p0, method='u', num=0)[source]

	get the possition list which can see the position, p
method: “u”: un-assigned positions, “a”: all, “s”: assigned positions
num: if method=”u”, the position must have be possible to be filled the number

	
get_all_pos(diff=, []method='a', num=0, chain=None, possibles=None)[source]

	get all postion

	
print_rec()[source]

	Print all the steps of solving process

	
read(file)[source]

	Read Sudoku’s Define from file

	
reduce(x, y, v, d='set', check=False, info='')[source]

	reduce the position(x, y)’s possible numbers from v
Return:

int, as following
2 -- if set a number,
1 -- if just set number
0 -- if is not in the possible set, if check is True, it will raise an SudokuError exception

	
setit(x, y, v, d='define', info='')[source]

	set the position x, y to be the number v
return: >=1 if set successfully, 0 if it can’t be set the number v

	
sort_unassigned_pos_by_possibles(possibles=0)[source]

	Get unassign position’s possible number list, format is [p1, p2,...]
and Sorted By the possible numbers
possibles: 0 for all, >=2, mean get only the possible numbers for it

	
class sudoku.sudoku.Number(v)[source]

	Number Object

	
can_see_by_group_number(p1)[source]

	Check if the position, p1, can be seen of all this number’s group number”
return: gn if can be seen by it, or None

	
setit(p1)[source]

	save assigned position in the p list

	
class sudoku.sudoku.Point(x, y)[source]

	A Position in a Sudoku’s table

	
can_see(p1)[source]

	this position can see p1? the value can’t be 3 or 7 it means the same pos
rtn: 0: can’t see p1

1: can see it in x line
2: can see it in y line
4: can see it in the box

	
can_see_those(posList)[source]

	check this position can see which positions in the posList, a [(x, y),...] list

	
class sudoku.sudoku.SolveMethod(fun, idx, name='', level=0, obvious=True)[source]

	Method Object

	
exception sudoku.sudoku.SudokuDone(x, y, v)[source]

	An exception When the table has been filled 81 positions

	
exception sudoku.sudoku.SudokuError(x, y, v, t)[source]

	An exception when x, y can’t be set or reduce to or form the number v
t: is the type: ‘s’ means set, ‘r’ means reduce

	
exception sudoku.sudoku.SudokuStop[source]

	An exception When the the record number >= recLimit

	
exception sudoku.sudoku.SudokuWhenPosSet(x, y, v)[source]

	An exception When the position, checkPos, has been set, and program want to setit

	
sudoku.sudoku.check_inobvious_number(m, first=1, only=False)[source]

	Check every number which has been assigned and known as group-number and its effect’s boxes’ does not have assigned that number”
Only: False, check all numbers

True, check the first number only

first: the first number to be checked

	
sudoku.sudoku.check_line_last_possible_for_number(m, first=1, only=False)[source]

	Check every line that only have one position for un-assigned number

	
sudoku.sudoku.check_obvious_number(m, first=1, only=False)[source]

	Check every number which has been assigned and its effect’s boxes’ does not have assigned that number
Only: False, check all numbers

True, check the first number only

first: the first number to be checked

	
sudoku.sudoku.compare_result(m, emu, result)[source]

	compare the result list, to check if there are same result in every step after the last record of original m.rec
if same for all emulate result, it means that it must be true, so can do by it

	
sudoku.sudoku.emulator(m, x, y, v, targets=, []checkval=0)[source]

	emulate the x, y to be set v, then start to use some basic methods to try to solve
it will stop when and return
1: one of the targets have been set the checkval
2: isDone
-1: error is True
0: all basic methods have been tested, and can’t solve
and the result matrix

	
sudoku.sudoku.fill_last_position_by_setting(m, sets)[source]

	When setting a number, may cause 1-3 groups left only one possible position
check if a group have only position left, just set it

	
sudoku.sudoku.fill_last_position_of_group(m, first=1, only=False)[source]

	If the un-assigned positions in a group(line or box) are only one left

	
sudoku.sudoku.fill_only_one_possible(m, first=1, only=False)[source]

	Check every unassigned position, if it’s possible numbers left one only WRITEN_POSSIBLE_LIMIT: True, Check position’s writen is True or note False, don’t check.

	Args:

	m: Matrix Object
first (int): the first number of checking
only (bool): just check the first number or not

	Returns:

	in the tuple format (sets, reduces, method Index to restart using, first, only)

	
sudoku.sudoku.guess(m, idx=0, first=0, only=False)[source]

	Guess Method

	
sudoku.sudoku.reduce_by_emulate_possible_in_one_position(m, first=1, only=False)[source]

	when a position(p1) has 2 or more possible numbers,
we can emulate every possible number and get its result,
1. if it causes an error, we can reduce that number,
2. if it can solve the sudoku, we can set this number,
3. if all possible number can’s get condition 1 or 2, we can compare their rec, if they have the same records, we can do it.

	
sudoku.sudoku.reduce_by_emulate_possible_number_in_group(m, first=1, only=False)[source]

	when a group(lineX, lineY, Box) has 2 or more position have the same possible number,
we can emulate every position to set the number and get its result,
1. if it causes an error, we can reduce the position’s possible number from that number,
2. if it can solve the sudoku, we can set this number in the position,
3. if all possible position can’s get condition 1 or 2, we can compare their rec, if they have the same records, we can do it.

	
sudoku.sudoku.reduce_by_group_number(m, first=1, only=False)[source]

	Reduce the possible number in a posiition by GroupNumber

	
sudoku.sudoku.reduce_by_two_possible_in_one_position(m, first=1, only=False)[source]

	when a position(p1) has two possible numbers only, we can assume if the position is one number(first)
then try to emulate to set the position with the other number(second),
then see the first number will be filled in a position(p2) which the position can see it
if so, we can reduce all these positions which can see p1 and p2 at the same time from the first number

	
sudoku.sudoku.reg_method()[source]

	register all method as an object and save them into a list to return

	
sudoku.sudoku.set_obvious_method_for_pos(m, method1, p1, v)[source]

	Check is there an more obvious method for the position, p1 than method1
Obvious methods include fillLastPostionOfGroup=0 and checkObviousNumber=1
return: True: set, False: not set

	
sudoku.sudoku.solve(file, loop_limit=0, rec_limit=0, check=None, level_limit=0, emu_limits=2, use_try=True, use_emu=False)[source]

	Solve a sudoku which define in a file!
loopLimit: the limit for the method loops, 0: no limits
recLimit: when the records >= recLimit, it will stop, 0: no limits

	
sudoku.sudoku.try_error(m=None, file='', depth=0)[source]

	Try Error Method, only fill the first possible postion

	
sudoku.sudoku.update_chain(m, first=1, only=False)[source]

	Update the chain of line
return: >=0 means the chain number’s amount in the matrix, m

	
sudoku.sudoku.update_group_number(m, num)[source]

	Update the group number, num, in a box, and store those group number in m.n.group list
return: >=0 means the group number’s amount in the matrix, m

	
sudoku.sudoku.update_indirect_group_number(m, num, amt=0, start=0, first=1, only=False)[source]

	Update in-direct Group Number, formed by the assigned number and groupnumber already known,
a recursive function

	
sudoku.sudoku.write_down_possible(m, first=1, only=False)[source]

	Write down the possible numbers in every un-assigned position
if WRITEN_POSSIBLE_LIMITS has set to 1..9, it will only write down the
possibles which <= that limits

 Copyright 2014, Robert J. Hwang.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	SudokuStudyLib 1.0 documentation

 Python Module Index

 s

 			

 		
 s	

 	[image: -]
 	
 sudoku (Unix, Windows)	
 oop's method of solving sudoku

 	
 	
 sudoku.sudoku	

 Copyright 2014, Robert J. Hwang.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	SudokuStudyLib 1.0 documentation

Index

 A
 | B
 | C
 | E
 | F
 | G
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | W

A

 	

 	allow() (sudoku.sudoku.Matrix method)

B

 	

 	Box (class in sudoku.sudoku)

C

 	

 	can_see() (sudoku.sudoku.Matrix method)

 	

 	(sudoku.sudoku.Point method)

 	can_see_by_group_number() (sudoku.sudoku.Number method)

 	can_see_those() (sudoku.sudoku.Point method)

 	Chain (class in sudoku.sudoku)

 	

 	check_inobvious_number() (in module sudoku.sudoku)

 	check_line_last_possible_for_number() (in module sudoku.sudoku)

 	check_obvious_number() (in module sudoku.sudoku)

 	compare_result() (in module sudoku.sudoku)

E

 	

 	emulator() (in module sudoku.sudoku)

F

 	

 	fill_last_position_by_setting() (in module sudoku.sudoku)

 	fill_last_position_of_group() (in module sudoku.sudoku)

 	

 	fill_only_one_possible() (in module sudoku.sudoku)

G

 	

 	get_all_pos() (sudoku.sudoku.Matrix method)

 	get_group_number() (sudoku.sudoku.Box method)

 	

 	GroupNumber (class in sudoku.sudoku)

 	guess() (in module sudoku.sudoku)

L

 	

 	LineX (class in sudoku.sudoku)

 	

 	LineY (class in sudoku.sudoku)

M

 	

 	Matrix (class in sudoku.sudoku)

N

 	

 	Number (class in sudoku.sudoku)

P

 	

 	Point (class in sudoku.sudoku)

 	

 	print_rec() (sudoku.sudoku.Matrix method)

R

 	

 	read() (sudoku.sudoku.Matrix method)

 	reduce() (sudoku.sudoku.Matrix method)

 	reduce_by_emulate_possible_in_one_position() (in module sudoku.sudoku)

 	reduce_by_emulate_possible_number_in_group() (in module sudoku.sudoku)

 	

 	reduce_by_group_number() (in module sudoku.sudoku)

 	reduce_by_two_possible_in_one_position() (in module sudoku.sudoku)

 	reg_method() (in module sudoku.sudoku)

S

 	

 	set_obvious_method_for_pos() (in module sudoku.sudoku)

 	setit() (sudoku.sudoku.Matrix method)

 	

 	(sudoku.sudoku.Number method)

 	solve() (in module sudoku.sudoku)

 	SolveMethod (class in sudoku.sudoku)

 	sort_unassigned_pos_by_possibles() (sudoku.sudoku.Matrix method)

 	sudoku (module)

 	

 	sudoku.sudoku (module)

 	SudokuDone

 	SudokuError

 	SudokuStop

 	SudokuWhenPosSet

T

 	

 	try_error() (in module sudoku.sudoku)

U

 	

 	update_chain() (in module sudoku.sudoku)

 	update_group_number() (in module sudoku.sudoku)

 	

 	update_indirect_group_number() (in module sudoku.sudoku)

W

 	

 	write_down_possible() (in module sudoku.sudoku)

 Copyright 2014, Robert J. Hwang.
 Created using Sphinx 1.2.2.

 _static/comment-close.png

_modules/sudoku/sudoku.html

 Navigation

 		
 index

 		
 modules |

 		SudokuStudyLib 1.0 documentation »

 		Module code »

 Source code for sudoku.sudoku

"""
.. module:: sudoku
 :platform: Unix, Windows
 :synopsis: oop's method of solving sudoku

.. moduleauthor:: Robert J. Hwang <RobertOfTaiwan@gmail.com>
"""

import sys
import copy
import itertools
import traceback
import time
import os

global variable
methodLoopIdx = 0 # the index of the methods loops
methodIdx = 0 # the method idx which run now
checkPos = None # set this varible, if you want to make an exception when this position has been set
writeDownAlready = False # if the every un-assigned positions have been writen down their possible number?
emulatePossibles = 2 # to set the possibles when using emulate method, for both positions and numbers
tryStack = [] # the try Stack
tryIdx = 0
tryUse = True
emuUse = True
Scope = 0 # the scope of difficult level
Level = 0 # the level Limit, 0 means no limit
NowPath = os.path.abspath(os.path.dirname(__file__))

ACTION_SET = 's' # action of set number
ACTION_REDUCE = 'r' # action of reduce number
WRITEN_POSSIBLE_LIMITS = 3 # When a position's possible numbers <= this numer,
it will be assume that it's possible number has been writen down for a human,
0 is same as 9 means no any limit
ACTION_GET_INFO = False # if want to get the info of an action,
those can be re-played by the info to describe the action
SCAN_ONE_NUMBER = True # in the methods of scanning numbers, use this to scan only one number
SCAN_ALL_NUMBER = False # in the methods of scanning numbers, use this to scan all numbers
SCAN_DEF_BEGIN = 1 # in the methods of scanning number, the default begin number
METHOD_DEF_BEGIN = 0 # the default idx of a serial methods to start
METHOD_FILL_LAST = 0 # the idx of the method of filling the last position in a group
METHOD_CHECK_OBVIOUS = 1 # the idx of the method of check obvious numbers
METHOD_WRITE_POSSIBLE = 4 # the method which write down all possible numbers in the positions
DEBUG_MODE = True # it is in the debug mode?
CHECK_MORE_OBVIOUS = True # When a postion will be setting in a method, does check it for more obvious way?
METHOD_BASIC_LEVEL = 7 # Basic methods
METHOD_EMULATE_START = 8 # the emulate method begin idx
METHOD_USE_TRY = True # the default of using try method or not
METHOD_USE_EMU = False # the default of using emulator
METHOD_LEVEL_LIMIT_WHENTRY = 2 # if start using try, set the level limit to use

[docs]class SudokuError(Exception):
 """An exception when x, y can't be set or reduce to or form the number v
 t: is the type: 's' means set, 'r' means reduce"""

 def __init__(self, x, y, v, t):
 self.x = x
 self.y = y
 self.v = v
 self.t = t

[docs]class SudokuDone(Exception):
 """An exception When the table has been filled 81 positions"""

 def __init__(self, x, y, v):
 self.x = x
 self.y = y
 self.v = v

[docs]class SudokuStop(Exception):
 """An exception When the the record number >= recLimit"""

 def __init__(self):
 pass

[docs]class SudokuWhenPosSet(Exception):
 """An exception When the position, checkPos, has been set, and program want to setit"""

 def __init__(self, x, y, v):
 self.x = x
 self.y = y
 self.v = v

[docs]class Point:
 """A Position in a Sudoku's table"""

 def __init__(self, x, y):
 self.x = x
 self.y = y
 self.v = 0
 self.possible = list(i for i in range(1, 10))
 self.writen = False # does the position's possible number has been writen by man
 self.b = int(x / 3) * 3 + int(y / 3) # the box index which this position belong to

 def __repr__(self):
 return "p({0},{1})".format(self.x + 1, self.y + 1)

[docs] def can_see(self, p1):
 """this position can see p1? the value can't be 3 or 7 it means the same pos
 rtn: 0: can't see p1
 1: can see it in x line
 2: can see it in y line
 4: can see it in the box"""
 if self == p1:
 return -1
 rtn = 0
 if self.x == p1.x:
 rtn += 1
 if self.y == p1.y:
 rtn += 2
 if self.b == p1.b:
 rtn += 4
 return rtn

[docs] def can_see_those(self, posList):
 """check this position can see which positions in the posList, a [(x, y),...] list"""
 rtn = []
 for x, y in posList:
 if self.x == x and self.y == y:
 continue
 if x == self.x or y == self.y:
 rtn.append((x, y))
 return rtn

class GroupBase:
 def __init__(self, idx, p):
 self.idx = idx
 self.p = p
 self.filled = 0
 self.possible = list(i for i in range(1, 10))
 self.chain = [] # store this group's chain positions

 def allow(self, v):
 """check the group can be filled the number(v)?"""
 for p1 in self.p:
 if p1.v == v:
 return False
 return True

 def get_num_pos(self, v):
 """get the position of a group which have been filled the number(v)"""
 rtn = None
 for p1 in self.p:
 if p1.v == v:
 rtn = p1
 break
 return rtn

 def count_num_possible(self, count=1):
 """get the un-assigned position in this group, and possible numbers only in [count] postions
 return: [(num,[p1, p2...]),...]"""

 rtn = []
 # count all possible number in to c and pos list, c is the times it show in the posiiton,
 # p records which positions
 c = list(0 for x in range(9))
 pos = list([] for x in range(9))
 for p1 in self.get_all_pos(method="u"):
 for num in p1.possible:
 c[num - 1] += 1
 pos[num - 1].append(p1)
 # get all the times = count
 for i in range(9):
 if c[i] == count:
 rtn.append((i + 1, pos[i]))

 return rtn

 def get_all_pos(self, diff=[], method="a", num=0, notInLineX=None, notInLineY=None, chain=None, possibles=None):
 """
 get position list in this group
 diff: exclude the positions in it
 method: a: all, s:has assigned, u:not assigned
 num: if method is u and set the number to 1-9, will get all possible pos which are possible to be assigned the num
 notInLineX: exclude the x line's positions
 notInLineY: exclude the y line's positions
 chain: if set, check it, if it is True, just get the chain positions, or get the un-chained postitions
 possibles: if method="u" and possibles!=None, it will only get the possible set's length = possibles
 """
 rtn = []
 lGetOtherThan = len(diff) > 0
 for p1 in self.p:
 if (method == "u" and p1.v != 0) or (method == "s" and p1.v == 0):
 continue
 if lGetOtherThan and p1 in diff:
 continue
 if num != 0 and method == "u" and num not in p1.possible:
 continue
 if p1.x == notInLineX or p1.y == notInLineY:
 continue
 if chain is not None:
 if (chain and p1 not in self.chain) or (not chain and p1 in self.chain):
 continue
 if possibles and method == "u":
 if len(p1.possible) != possibles:
 continue
 rtn.append(p1)
 return rtn

[docs]class LineX(GroupBase):
 """Line of X"""

 def __repr__(self):
 rtn = ""
 for x in self.p:
 rtn += "{0:3d}\n".format(x.v)
 return rtn

[docs]class LineY(GroupBase):
 """Line of Y"""

 def __repr__(self):
 rtn = ""
 for x in self.p:
 rtn = rtn + "{0:3d}".format(x.v)
 return rtn

[docs]class Box(GroupBase):
 """Box"""

 def __init__(self, idx, p):
 super(Box, self).__init__(idx, p)
 x = int(idx / 3)
 y = idx % 3
 # record all the box's related boxes
 self.effects = set()
 self.effectsX = set() # x-direction's effect boxes
 self.effectsY = set() # y-direction's effect boxes
 for i in range(3):
 for j in range(3):
 if (i == x and j != y) or (i != x and j == y):
 idx = i * 3 + j
 self.effectsX.add(idx) if i == x else self.effectsY.add(idx)
 self.effects.add(idx)
 self.groupnumber = set() # record the box's group number

 def __repr__(self):
 rtn = ""
 for i in range(3):
 for j in range(3):
 p1 = self.p[j * 3 + i]
 rtn = rtn + "{0:3d}".format(p1.v)
 rtn += "\n"
 return rtn

[docs] def get_group_number(self, num, pos=[], notInLineX=None, notInLineY=None):
 """if the unassigned num in this box which it's all possible positions have the same direction,
 we call it as a GroupNumber"""
 if len(pos) <= 0:
 pos = super(Box, self).get_all_pos(num=num, method="u", notInLineX=notInLineX, notInLineY=notInLineY)

 amt = len(pos)
 if amt < 2 or amt > 3:
 return None

 # check the first two position and decide the direction
 if pos[0].x == pos[1].x:
 idx = pos[0].x
 direction = "x"
 elif pos[0].y == pos[1].y:
 idx = pos[0].y
 direction = "y"
 else:
 return None

 # if there is three possible position, check it
 if amt > 2:
 if not (pos[2].x == idx if direction == "x" else pos[2].y == idx):
 return None
 # record the number
 self.groupnumber.add(num)

 return GroupNumber(self.idx, num, pos, direction, idx)

[docs]class GroupNumber():
 """Group Number in Box"""

 def __init__(self, b, num, p, direction, idx):
 self.b = b # box idx
 self.num = num # 1..9
 self.p = p # the positions' list which form a group number
 self.direction = direction # "x": as a x-line's number, "y": as a y-line's number
 self.idx = idx # x-line or y-line's index

 def __repr__(self):
 rtn = "GroupNumber({0}) in box({1}) formed by {2} at line-{3}({4})".format(self.num, self.b, repr(self.p),
 self.direction, self.idx)
 return rtn

[docs]class Number:
 """Number Object"""

 def __init__(self, v):
 self.v = v
 self.p = list()
 self.filled = 0
 self.group = [] # store the GroupNumber info

 def __repr__(self):
 return repr(self.p)

[docs] def setit(self, p1):
 """save assigned position in the p list"""
 self.p.append(p1)
 self.filled += 1

[docs] def can_see_by_group_number(self, p1):
 """Check if the position, p1, can be seen of all this number's group number"
 return: gn if can be seen by it, or None"""
 if len(self.group) <= 0:
 return None
 for gn in self.group:
 if gn.b == p1.b: # at the same box
 continue
 if (gn.direction == "x" and p1.x == gn.idx) or (gn.direction == "y" and p1.y == gn.idx):
 return gn
 return None

[docs]class Chain:
 """A chain of two and above positions which are not in the same box but in the same line
 and can form a chain, means the possible number in this chain positions only can be filled in these positions"""

 def __init__(self, numList, posList):
 self.numList = numList
 self.posList = posList
 #self.direction = "x" if posList[0].x == posList[1].x else "y"
 #self.idx = posList[0].x if self.direction == "x" else posList[0].y

 def __repr__(self):
 return "chain({0} in Pos({1})".format(self.numList, self.posList)

[docs]class Matrix:
 """A Table of a Sudoku"""

 def __init__(self, file=""):
 self.rec = [] # record all the steps,
 # element's format is (x, y, v, t, d), t="s"|"r", d="Description String"
 self.filled = 0 # record how many numbers have been assigned in this table
 self.done = False # if solved or not
 self.error = False # if there is an error occurs
 self.lineX = list([] for i in range(9))
 self.lineY = list([] for i in range(9))
 self.b = list([] for i in range(9))
 self.p = list(list(Point(y, x) for x in range(9)) for y in range(9))
 self.n = list([] for i in range(10))
 for i in range(9):
 self.lineX[i] = LineX(i, list(self.p[i][j] for j in range(9)))
 for i in range(9):
 self.lineY[i] = LineY(i, list(self.p[j][i] for j in range(9)))
 for i in range(3):
 for j in range(3):
 idx = i * 3 + j
 self.b[idx] = Box(idx, list(self.p[3 * i + x][3 * j + y] for x in range(3) for y in range(3)))
 for i in range(1, 10): # the first, index=0 will not be used
 self.n[i] = Number(i)

 self.chain = [] # store chains in this list

 # read define
 if file != "":
 self.read(file)

[docs] def get_all_pos(self, diff=[], method="a", num=0, chain=None, possibles=None):
 """get all postion"""
 rtn = []
 for line in self.lineX:
 rtn = rtn + line.get_all_pos(method=method, num=num, chain=chain, diff=diff, possibles=possibles)
 return rtn

[docs] def sort_unassigned_pos_by_possibles(self, possibles=0):
 """Get unassign position's possible number list, format is [p1, p2,...]
 and Sorted By the possible numbers
 possibles: 0 for all, >=2, mean get only the possible numbers for it"""
 rtn = []
 check = possibles >= 2
 for i in range(9):
 for j in range(9):
 if self.p[i][j].v != 0:
 continue
 if check and len(self.p[i][j].possible) != possibles:
 continue
 rtn.append(self.p[i][j])
 rtn = sorted(rtn, key=lambda pos: len(pos.possible))
 return rtn

[docs] def can_see(self, p0, method="u", num=0):
 """get the possition list which can see the position, p
 method: "u": un-assigned positions, "a": all, "s": assigned positions
 num: if method="u", the position must have be possible to be filled the number
 """
 rtn = []
 for group in (self.lineX[p0.x].p, self.lineY[p0.y].p, self.b[p0.b].p):
 for p1 in group:
 if p1 == p0 or p1 in rtn:
 continue
 if method == "u":
 if p1.v != 0 or (num != 0 and num not in p1.possible):
 continue
 elif method == "s":
 if p1.v == 0:
 continue
 rtn.append(p1)
 return rtn

[docs] def setit(self, x, y, v, d="define", info=""):
 """set the position x, y to be the number v
 return: >=1 if set successfully, 0 if it can't be set the number v"""

 global checkPos # the position want to check

 sets = 0
 if not self.allow(x, y, v):
 raise SudokuError(x, y, v, ACTION_SET)
 return 0

 idx = self.p[x][y].b

 # the position(x, y)'s possible set to be empty
 self.p[x][y].possible.clear()

 # the filled numbers add one
 self.filled += 1
 self.lineX[x].filled += 1
 self.lineY[y].filled += 1
 self.b[idx].filled += 1

 # reduce every group's possible number set
 self.b[idx].possible.remove(v)
 self.lineX[x].possible.remove(v)
 self.lineY[y].possible.remove(v)

 # set number in this position
 sets += 1
 self.p[x][y].v = v

 # reduce all effect's positions' possible numbers
 for p1 in self.can_see(self.p[x][y], method="u", num=v):
 rtn = self.reduce(p1.x, p1.y, v, d="set")
 if rtn >= 2:
 sets += 1

 # record the number's position
 self.n[v].setit(self.p[x][y])

 # record this step
 if d != "define":
 self.rec.append((x, y, v, ACTION_SET, d, info))

 # check if it is done
 if self.filled == 81:
 raise SudokuDone(x, y, v)

 if DEBUG_MODE:
 # check the checkPos is set and now the position is it or not
 if checkPos and (x, y) in checkPos:
 raise SudokuWhenPosSet(x, y, v)

 #if d != "define":
 # print("set: p({0},{1})={2} by {3}({4})".format(x+1, y+1, v, d, info))

 return sets

[docs] def print_rec(self):
 """Print all the steps of solving process"""
 i = 0
 for x, y, v, t, d, info in self.rec:
 i += 1
 print("{5:3d}-{4}: p({0},{1})={2} by {3} - {6}".format(x + 1, y + 1, v, d, t, i, info))

[docs] def reduce(self, x, y, v, d="set", check=False, info=""):
 """reduce the position(x, y)'s possible numbers from v
 Return::
 int, as following
 2 -- if set a number,
 1 -- if just set number
 0 -- if is not in the possible set, if check is True, it will raise an SudokuError exception
 """
 global methodLoopIdx, methodIdx

 if len(self.p[x][y].possible) <= 1:
 raise SudokuError(x, y, v, ACTION_REDUCE)

 if v in self.p[x][y].possible:
 self.p[x][y].possible.remove(v)
 # record this step
 if d != "set":
 self.rec.append((x, y, v, ACTION_REDUCE, d, info))
 return 1
 else:
 if check:
 raise SudokuError(x, y, v, ACTION_REDUCE)
 else:
 return 0

[docs] def allow(self, x, y, v):
 """Checking if the position x, y, can be set the value v"""
 idx = self.p[x][y].b
 if self.p[x][y].v != 0 or not self.lineX[x].allow(v) or not self.lineY[y].allow(v) or not self.b[idx].allow(v):
 return False
 else:
 return True

[docs] def read(self, file):
 """Read Sudoku's Define from file"""

 global NowPath

 if not os.path.isfile(file):
 file = "data/" + file
 try:
 f = open(file, "r")
 except IOError:
 return -1

 i = 0
 for line in f:
 if len(line) > 0:
 index = line.split(",")
 x, y = (int(index[0]) - 1, int(index[1]) - 1)
 v = int(index[2])
 self.setit(x, y, v)
 i += 1
 return i

 def __repr__(self):
 rtn = ""
 for i in range(9):
 for j in range(9):
 rtn = rtn + "{0:3d}".format(self.p[j][i].v)
 rtn += "\n"
 return rtn

[docs]def fill_only_one_possible(m, first=1, only=False):
 """Check every unassigned position, if it's possible numbers left one only WRITEN_POSSIBLE_LIMIT: True, Check position's writen is True or note False, don't check.

 Args:
 m: Matrix Object
 first (int): the first number of checking
 only (bool): just check the first number or not

 Returns:
 in the tuple format (sets, reduces, method Index to restart using, first, only)

 """
 sets = 0
 for line in m.p:
 for p1 in line:
 if (WRITEN_POSSIBLE_LIMITS == 0 or (WRITEN_POSSIBLE_LIMITS > 0 and p1.writen)) and p1.v == 0 and len(
 p1.possible) == 1:
 m.setit(p1.x, p1.y, p1.possible[0], d="Only One Possible")
 sets += 1
 return sets, 0, METHOD_DEF_BEGIN, SCAN_DEF_BEGIN, SCAN_ALL_NUMBER

[docs]def fill_last_position_of_group(m, first=1, only=False):
 """If the un-assigned positions in a group(line or box) are only one left"""
 sets = 0
 for grouptype in (m.lineX, m.lineY, m.b):
 for grp in grouptype:
 if grp.filled == 8:
 for p1 in grp.p:
 if p1.v == 0:
 m.setit(p1.x, p1.y, grp.possible[0],
 d="Last Position in a {0}: {1}".format(grp.__doc__, grp.idx))
 sets += 1
 break
 return sets, 0, METHOD_DEF_BEGIN, SCAN_DEF_BEGIN, SCAN_ALL_NUMBER

[docs]def fill_last_position_by_setting(m, sets):
 """When setting a number, may cause 1-3 groups left only one possible position
 check if a group have only position left, just set it"""
 recIdx = len(m.rec) - 1
 idx = 1
 rtn = 0
 v = 1
 # process every sets from the end of records
 while idx <= sets:
 while True:
 r = m.rec[recIdx]
 if r[3] != "s":
 recIdx -= 1
 else:
 break
 x = r[0];
 y = r[1]

 for group in (m.lineX[x], m.lineY[y], m.b[m.p[x][y].b]):
 if len(group.possible) != 1:
 continue
 for p1 in group.p:
 if p1.v == 0:
 v = group.possible[0]
 m.setit(p1.x, p1.y, v, d="Last Position By Setting")
 rtn += 1

 idx += 1 # next settings

 return rtn, 0, METHOD_CHECK_OBVIOUS, v, SCAN_ALL_NUMBER

[docs]def set_obvious_method_for_pos(m, method1, p1, v):
 """Check is there an more obvious method for the position, p1 than method1
 Obvious methods include fillLastPostionOfGroup=0 and checkObviousNumber=1
 return: True: set, False: not set
 """

 if method1 > METHOD_FILL_LAST:
 # check p1 is an last postion in a group or not
 if m.lineX[p1.x].filled == 8 or m.lineY[p1.y].filled == 8 or m.b[p1.b].filled == 8:
 m.setit(p1.x, p1.y, v, d="Change To Be Last Position!")
 return True
 if method1 > METHOD_CHECK_OBVIOUS:
 info = ""
 # check p1 can get in an obvious way, like METHOD_CHECK_OBVIOUS
 for p2 in m.b[p1.b].get_all_pos(method="u", num=v, diff=[(p1.x, p1.y)]):
 if m.lineX[p2.x].allow(v):
 return False
 else:
 if ACTION_GET_INFO:
 info = info + repr(p2) + ", lineX(" + repr(m.lineX[p2.x].get_num_pos(v)) + ")\n"
 if m.lineY[p2.y].allow(v):
 return False
 else:
 if ACTION_GET_INFO:
 info = info + repr(p2) + ", lineY(" + repr(m.lineY[p2.y].get_num_pos(v)) + ")\n"
 # after checking every possible poses in a box other than the position, p1,
 # that not allowing for the number, v, so p1 must be v
 m.setit(p1.x, p1.y, v, d="checkObviousNumber", info=info)
 return True

 return False

[docs]def check_obvious_number(m, first=1, only=False):
 """Check every number which has been assigned and its effect's boxes' does not have assigned that number
 Only: False, check all numbers
 True, check the first number only
 first: the first number to be checked"""
 sets = 0
 end = 9 if not only else 1 # if check the first number
 for i in range(end):
 num = first + i
 num = num if num < 10 else num - 9
 checked = set() # save the checked box
 for p1 in m.n[num].p:
 for b in m.b[p1.b].effects:
 #print("check number {0} of pos({1},{2})!".format(num, p1.x, p1.y))
 possible = []
 info = "" # record how to descide to set
 if b in checked:
 continue
 else:
 checked.add(b)
 if num not in m.b[b].possible:
 continue
 for p2 in m.b[b].p:
 if p2.v != 0 or p2.can_see(p1) > 0:
 continue;
 if not m.lineX[p2.x].allow(num):
 if ACTION_GET_INFO:
 info = info + repr(p2) + ", lineX(" + repr(m.lineX[p2.x].get_num_pos(num)) + ")\n"
 continue
 if not m.lineY[p2.y].allow(num):
 if ACTION_GET_INFO:
 info = info + repr(p2) + ", lineY(" + repr(m.lineX[p2.x].get_num_pos(num)) + ")\n"
 continue
 #print(num, p2, p2.possible)
 possible.append(p2)
 if len(possible) == 1:
 sets += 1
 flag_set_more_obvious = False
 if CHECK_MORE_OBVIOUS:
 flag_set_more_obvious = set_obvious_method_for_pos(m, METHOD_CHECK_OBVIOUS, possible[0], num)
 if not flag_set_more_obvious:
 m.setit(possible[0].x, possible[0].y, num, d="checkObviousNumber", info=info)
 # call self to solve the same number completely
 r = check_obvious_number(m, first=num, only=SCAN_ALL_NUMBER)
 sets += r[0]
 return sets, r[1], r[2], r[3], r[4]
 return sets, 0, METHOD_CHECK_OBVIOUS, SCAN_DEF_BEGIN, SCAN_ALL_NUMBER

[docs]def update_group_number(m, num):
 """Update the group number, num, in a box, and store those group number in m.n.group list
 return: >=0 means the group number's amount in the matrix, m"""
 sets = 0
 actions = 0
 info = ""
 #m.n[num].group.clear() # empty first
 for i in range(9): # check every box
 if num not in m.b[i].possible or num in m.b[i].groupnumber:
 continue
 pos = m.b[i].get_all_pos(num=num, method='u')
 # if the possible position, just set it and return
 if len(pos) == 1:
 #print(m.b[i], pos, num)
 if ACTION_GET_INFO:
 pass

 SetInMoreObvious = False
 if CHECK_MORE_OBVIOUS:
 SetInMoreObvious = set_obvious_method_for_pos(m, 3, pos[0], num)
 if not SetInMoreObvious:
 m.setit(pos[0].x, pos[0].y, num, d="UpdateGroupNumber", info=info)
 return 1, 0, METHOD_CHECK_OBVIOUS, num, SCAN_ONE_NUMBER

 gn = m.b[i].get_group_number(num, pos=pos)
 if gn is not None:
 m.n[num].group.append(gn)
 actions += 1
 if actions > 0:
 sets, k, start, first, only = update_indirect_group_number(m, num)
 actions = actions + k
 else:
 start = METHOD_DEF_BEGIN
 first = SCAN_DEF_BEGIN
 only = SCAN_ALL_NUMBER

 return sets, actions, start, first, only

[docs]def update_indirect_group_number(m, num, amt=0, start=METHOD_DEF_BEGIN, first=SCAN_DEF_BEGIN, only=SCAN_ALL_NUMBER):
 """Update in-direct Group Number, formed by the assigned number and groupnumber already known,
 a recursive function"""
 info = ""
 for gn in m.n[num].group:
 effects = m.b[gn.b].effectsX if gn.direction == "x" else m.b[gn.b].effectsY
 #print(amt, effectBoxes, gn)
 for idx in effects: # check every effect box, does the possible position for the num can form a group
 # number or not
 # check if the num is existed in the box, or already as a groupnumber
 if num not in m.b[idx].possible or num in m.b[idx].groupnumber:
 continue
 if gn.direction == "x":
 pos = m.b[idx].get_all_pos(num=num, method='u', notInLineX=gn.idx)
 else:
 pos = m.b[idx].get_all_pos(num=num, method='u', notInLineY=gn.idx)
 if len(pos) == 1:
 if ACTION_GET_INFO:
 pass

 flag = False
 if CHECK_MORE_OBVIOUS:
 flag = set_obvious_method_for_pos(m, 4, pos[0], num)
 if not flag:
 m.setit(pos[0].x, pos[0].y, num, d="UpdateInDirectGroupNumber", info=info)

 return 1, amt, METHOD_CHECK_OBVIOUS, num, SCAN_ONE_NUMBER

 gn0 = m.b[idx].get_group_number(num, pos=pos)
 if gn0 is not None:
 m.n[num].group.append(gn0)
 amt += 1
 # call self again to get all possible InDirect GroupNumber
 return update_indirect_group_number(m, num, amt=amt)
 return 0, amt, start, first, only

[docs]def check_inobvious_number(m, first=1, only=False):
 """Check every number which has been assigned and known as group-number and its effect's boxes' does not have assigned that number"
 Only: False, check all numbers
 True, check the first number only
 first: the first number to be checked"""
 sets = 0
 actions = 0
 end = 9 if not only else 1 # if check the first number
 for i in range(end):
 num = first + i
 num = num if num < 10 else num - 9
 checked = set() # save the checked box
 sets, actions, start, first, only = update_group_number(m, num)
 if sets > 0:
 return sets, actions, start, first, only
 # check every box
 for bi in range(9):
 if num not in m.b[bi].possible:
 continue
 pos = []
 info = ""
 for p1 in m.b[bi].get_all_pos(num=num, method="u"):
 gn = m.n[num].can_see_by_group_number(p1)
 if gn is not None:
 if ACTION_GET_INFO:
 info = info + repr(gn) + "\n"
 continue
 else:
 pos.append(p1)
 if len(pos) == 1:

 flag = False
 if CHECK_MORE_OBVIOUS:
 flag = set_obvious_method_for_pos(m, 5, pos[0], num)
 if not flag:
 m.setit(pos[0].x, pos[0].y, num, d="checkInObviousNumber", info=info)

 return 1, actions, METHOD_CHECK_OBVIOUS, num, SCAN_ALL_NUMBER

 return sets, actions, METHOD_DEF_BEGIN, SCAN_DEF_BEGIN, SCAN_ALL_NUMBER

[docs]def check_line_last_possible_for_number(m, first=1, only=False):
 """Check every line that only have one position for un-assigned number"""
 sets = 0

 for groupType in (m.lineX, m.lineY):
 for line in groupType:
 if line.filled >= 8:
 continue
 for c in line.count_num_possible(count=1):
 p1 = c[1][0]
 info = ""
 if ACTION_GET_INFO:
 pass
 m.setit(p1.x, p1.y, c[0], d="checkLineLastPossibleForNumber", info=info)
 sets += 1
 # if get one, just return, let other methods to process others
 return sets, 0, METHOD_DEF_BEGIN, c[0], SCAN_ONE_NUMBER

 return sets, 0, METHOD_DEF_BEGIN, SCAN_DEF_BEGIN, SCAN_ALL_NUMBER

[docs]def write_down_possible(m, first=1, only=False):
 """Write down the possible numbers in every un-assigned position
 if WRITEN_POSSIBLE_LIMITS has set to 1..9, it will only write down the
 possibles which <= that limits"""

 global writeDownAlready

 writeDownAlready = True
 for line in m.p:
 for p1 in line:
 if p1.v != 0 or p1.writen:
 continue
 # if set writen limits and the possible numbers great it, just pretend it can not be seen for the user
 if 0 < WRITEN_POSSIBLE_LIMITS < len(p1.possible):
 continue
 p1.writen = True
 if len(p1.possible) == 1:
 v = p1.possible[0]
 m.setit(p1.x, p1.y, v, d="writeDownPossible")
 return 1, 0, METHOD_CHECK_OBVIOUS, v, SCAN_ALL_NUMBER

 return 0, 0, METHOD_DEF_BEGIN, SCAN_DEF_BEGIN, SCAN_ALL_NUMBER

[docs]def reduce_by_group_number(m, first=1, only=False):
 """Reduce the possible number in a posiition by GroupNumber"""
 sets = 0
 actions = 0
 end = 9 if not only else 1 # if check the first number
 for i in range(9):
 num = first + i
 num = num if num < 10 else num - 9
 for gn in m.n[num].group:
 for bi in m.b[gn.b].effectsX if gn.direction == "x" else m.b[gn.b].effectsY:
 for p1 in m.b[bi].get_all_pos(method="u", num=num):
 if p1.x == gn.idx if gn.direction == "x" else p1.y == gn.idx:
 rtn = m.reduce(p1.x, p1.y, num, d="reduceByGroupNumber")
 actions += 1
 return sets, actions, METHOD_DEF_BEGIN, num, SCAN_ONE_NUMBER

def get_chains(m, group, pos, numbers):
 # get the possible pos's numbers chain
 amt = 0
 q = []
 for p1 in pos:
 if len(p1.possible) <= numbers:
 q.append(p1)
 # if qualified positions is less than numbers, just return
 if len(q) < numbers:
 return []

 rtn = []
 for c in itertools.combinations(q, numbers):
 s = set()
 for p1 in c:
 s = s | set(p1.possible)
 if len(s) == numbers:
 chain = Chain(list(s), c)
 rtn.append(chain)
 m.chain.append(chain)
 for p1 in c:
 group.chain.append(p1)
 amt = amt + 1

 return rtn

[docs]def update_chain(m, first=1, only=False):
 """Update the chain of line
 return: >=0 means the chain number's amount in the matrix, m"""

 sets = 0
 reduces = 0
 info = ""

 for groupType in (m.lineX, m.lineY, m.b):
 for g in groupType:
 pos = g.get_all_pos(method="u", chain=False)
 k = len(pos)
 if k == 0:
 continue
 elif k == 1:
 #print(g, g.idx, pos, k, pos[0].possible)
 m.setit(pos[0].x, pos[0].y, pos[0].possible[0], d="updateChain")
 return 1, 0, METHOD_CHECK_OBVIOUS, pos[0].possible[0], SCAN_ALL_NUMBER
 else:
 maxChainNumbers = min(k, WRITEN_POSSIBLE_LIMITS) if WRITEN_POSSIBLE_LIMITS != 0 else k
 for i in range(1, maxChainNumbers):
 chains = get_chains(m, g, pos, i + 1)
 if len(chains) == 0:
 continue
 # reduce by chain and return
 for chain in chains:
 for p1 in g.get_all_pos(method="u", diff=chain.posList):
 for v in chain.numList:
 if v in p1.possible:
 m.reduce(p1.x, p1.y, v, d="updateChain", info=repr(chain))
 reduces += 1
 if reduces > 0:
 return 0, reduces, METHOD_CHECK_OBVIOUS, SCAN_DEF_BEGIN, SCAN_ALL_NUMBER

 return sets, reduces, METHOD_DEF_BEGIN, SCAN_DEF_BEGIN, SCAN_ALL_NUMBER

[docs]def reduce_by_two_possible_in_one_position(m, first=1, only=False):
 """when a position(p1) has two possible numbers only, we can assume if the position is one number(first)
 then try to emulate to set the position with the other number(second),
 then see the first number will be filled in a position(p2) which the position can see it
 if so, we can reduce all these positions which can see p1 and p2 at the same time from the first number"""

 reduces = 0
 sets = 0
 for p1 in m.get_all_pos(method="u", possibles=2):
 for i in range(2):
 if i == 0:
 first, second = p1.possible
 else:
 second, first = p1.possible
 pos = m.can_see(p1, method="u", num=first)
 if len(pos) <= 1:
 continue
 else:
 targets = [(p.x, p.y) for p in pos]
 rtn, m1, idx = emulator(m, p1.x, p1.y, second, targets=targets, checkval=first)
 if rtn == 2:
 m.setit(p1.x, p1.y, second, d="Emulate it and solve the sudoku!")
 return 1, 0, METHOD_CHECK_OBVIOUS, second, SCAN_ALL_NUMBER
 elif rtn == 1:
 p0 = m.p[targets[idx][0]][targets[idx][1]]
 for x, y in p0.can_see_those(targets):
 if first in m.p[x][y].possible:
 #print("{4} and {5} reduce ({0},{1})'s possilbe={2} from {3}".format(x+1, y+1, m.p[x][y].possible, first, p1, p0))
 r = m.reduce(x, y, first,
 d="reduceByTwoPossibleInOnePostion{0}, first={1}, second={2} with postion:{3}".format(
 (p1.x, p1.y), first, second, p0))
 if r == 1:
 reduces += 1
 elif r == 2:
 sets += 1
 if sets > 0 or reduces > 0:
 return sets, reduces, METHOD_CHECK_OBVIOUS, SCAN_DEF_BEGIN, SCAN_ALL_NUMBER
 elif rtn == -1:
 m.setit(p1.x, p1.y, first, d="Emulate it and it causes error, so the number must be another!")
 return 1, 0, METHOD_CHECK_OBVIOUS, first, SCAN_ALL_NUMBER
 else:
 continue

 return sets, reduces, METHOD_DEF_BEGIN, SCAN_DEF_BEGIN, SCAN_ALL_NUMBER

[docs]def reduce_by_emulate_possible_in_one_position(m, first=1, only=False):
 """when a position(p1) has 2 or more possible numbers,
 we can emulate every possible number and get its result,
 1. if it causes an error, we can reduce that number,
 2. if it can solve the sudoku, we can set this number,
 3. if all possible number can's get condition 1 or 2, we can compare their rec, if they have the same records, we can do it.
 """

 global emulatePossibles

 print("reduceByEmulatePossibleInOnePositions: {0}".format(emulatePossibles))
 reduces = 0
 sets = 0
 emu = [] # record the emulate method, [(p1,v),....]
 result = [] # save the emulate result of matrix for every possible number
 for p1 in m.get_all_pos(method="u", possibles=emulatePossibles):
 for num in p1.possible:
 emu.append((p1, num))
 rtn, m1, idx = emulator(m, p1.x, p1.y, num)
 if rtn == 2:
 m.setit(p1.x, p1.y, num, d="Emulate it and solve the sudoku!")
 return 1, 0, METHOD_CHECK_OBVIOUS, num, SCAN_ALL_NUMBER
 elif rtn == -1:
 m.reduce(p1.x, p1.y, num, d="Emulate it and it causes error, so the number can be reduce!")
 return 0, 1, METHOD_CHECK_OBVIOUS, SCAN_DEF_BEGIN, SCAN_ALL_NUMBER
 else:
 result.append(m1)
 continue

 if len(result) == emulatePossibles:
 sets, reduces = compare_result(m, emu, result)

 return sets, reduces, METHOD_DEF_BEGIN, SCAN_DEF_BEGIN, SCAN_ALL_NUMBER

[docs]def reduce_by_emulate_possible_number_in_group(m, first=1, only=False):
 """when a group(lineX, lineY, Box) has 2 or more position have the same possible number,
 we can emulate every position to set the number and get its result,
 1. if it causes an error, we can reduce the position's possible number from that number,
 2. if it can solve the sudoku, we can set this number in the position,
 3. if all possible position can's get condition 1 or 2, we can compare their rec, if they have the same records, we can do it.
 """

 global emulatePossibles

 print("reduceByEmulatePossibleNumberInGroup: {0}".format(emulatePossibles))
 reduces = 0
 sets = 0
 emu = [] # record the emulate method, [(p1,v),....]
 result = [] # save the emulate result of matrix for every possible number
 for groupType in (m.lineX, m.lineY, m.b):
 for idx in range(9):
 for num, pos in groupType[idx].count_num_possible(count=emulatePossibles):
 for p1 in pos:
 emu.append((p1, num))
 rtn, m1, idx = emulator(m, p1.x, p1.y, num)
 if rtn == 2:
 m.setit(p1.x, p1.y, num, d="Emulate it and solve the sudoku!")
 return 1, 0, METHOD_CHECK_OBVIOUS, num, SCAN_ALL_NUMBER
 elif rtn == -1:
 m.reduce(p1.x, p1.y, num, d="Emulate it and it causes error, so the number can be reduce!")
 return 0, 1, METHOD_CHECK_OBVIOUS, SCAN_DEF_BEGIN, SCAN_ALL_NUMBER
 else:
 result.append(m1)
 continue
 if len(result) == emulatePossibles:
 s, r = compare_result(m, emu, result)
 sets += s
 reduces += r

 return sets, reduces, METHOD_DEF_BEGIN, SCAN_DEF_BEGIN, SCAN_ALL_NUMBER

[docs]def compare_result(m, emu, result):
 """compare the result list, to check if there are same result in every step after the last record of original m.rec
 if same for all emulate result, it means that it must be true, so can do by it
 """

 global emulatePossibles

 sets = 0
 reduces = 0
 recIdx = len(m.rec)
 results = len(result)
 m1 = result[0] # use the first result to compare with others
 i = 0
 for r1 in m1.rec[recIdx:]:
 i += 1 # step idx of m1
 info = "The #{0} step of the {1} emulate as {2} is same with follows:".format(i, emu[0][0], emu[0][1])
 same = 0
 resultIdx = 0
 for m2 in result[1:]:
 resultIdx += 1
 idx = 0 # step idx of others
 for r2 in m2.rec[recIdx:]:
 idx += 1
 if (r1[0], r1[1], r1[2], r1[3]) == (r2[0], r2[1], r2[2], r2[3]):
 if ACTION_GET_INFO:
 info = info + "\nThe #{0} step of the {1} emulate as {2}".format(idx, emu[resultIdx][0],
 emu[resultIdx][1])
 same += 1
 break
 if same == results - 1:
 if r1.t == "s":
 sets += 1
 m.setit(r1[0], r1[1], r1[2], d="compareResult for {0} emulate!".format(results), info=info)
 else:
 reduces += 1
 m.reduce(r1[0], r1[1], r1[2], d="compareResult for {0} emulate!".format(results), info=info)
 return sets, reduces

[docs]def emulator(m, x, y, v, targets=[], checkval=0):
 """emulate the x, y to be set v, then start to use some basic methods to try to solve
 it will stop when and return
 1: one of the targets have been set the checkval
 2: isDone
 -1: error is True
 0: all basic methods have been tested, and can't solve
 and the result matrix"""

 global writeDownAlready, checkPos

 check_pos_save = checkPos
 m1 = copy.deepcopy(m)

 if len(targets) > 0:
 check_target = True
 checkPos = targets
 else:
 check_target = False

 methodLoopIdx = 0
 begin = time.time()
 allmethods = reg_method()
 start = METHOD_CHECK_OBVIOUS # start from for the first time
 num = 1
 only = False
 rtn = 0
 idx = 0 # the index of the targets, which = checkval
 emulate_first = True

 while True:
 actions = 0
 methodLoopIdx += 1
 try:

 if emulate_first:
 #print(m1.p[2][2].possible)
 #print("Emulator Start in P({0},{1})={2}!".format(x, y, v))
 m1.setit(x, y, v, d="Emulator Start!")
 emulate_first = False

 for method in allmethods[start:METHOD_BASIC_LEVEL]:
 methodIdx = method.idx
 # every method have 5 return values:
 # sets: how many positions have been set
 # reduces: how many numbers have been reduced
 # start: which method will start to be used, default is 1
 # num: which number will be the first number to be procossed, for methods that look over all numbers
 # only: for methods which look over all numbers to process one only, which is the num
 sets, reduces, start, num, only = method.run(m1, first=num, only=only)
 #print("Emulate#{0}-{2}: {1}, sets={3}, reduces={4}".format(methodLoopIdx, method.name, methodIdx, sets, reduces))
 if sets > 0:
 rtn = fill_last_position_by_setting(m1, sets)
 if rtn[0] > 0:
 start = rtn[2];
 first = rtn[3];
 only = rtn[4]
 #print("Emulate#{0}-last: {1}, sets={3}, reduces={4}".format(methodLoopIdx, "LastPosition", methodIdx, rtn, reduces))
 sets = sets + rtn[0]
 if (sets > 0 or reduces > 0) and writeDownAlready:
 rtn = fill_only_one_possible(m1)
 if rtn[0] > 0:
 sets = rtn[0];
 start = rtn[2];
 first = rtn[3];
 only = rtn[4]
 #print("Emulate#{0}-only: {1}, sets={3}, reduces={4}".format(methodLoopIdx, "LastPossible", methodIdx, rtn, reduces))
 if sets > 0 or reduces > 0:
 actions = actions + sets + reduces
 break
 except SudokuDone as err:
 print("It is done by the last position({0},{1}) to set to be {2}!".format(err.x, err.y, err.v))
 rtn = 2
 break
 except SudokuWhenPosSet as err:
 #print("It is stopped by the position({0}) be set! method={1}".format(checkPos, methodIdx))
 if err.v == checkval:
 idx = targets.index((err.x, err.y))
 rtn = 1
 break
 else:
 continue
 except SudokuError as err:
 rtn = -1
 print("It is impossible for {0}, {1} to set/reduce {2}! ({3})".format(err.x, err.y, err.v, err.t))
 #traceback.print_exc()
 break
 except: # unexpected error
 print("Unexpected error:", sys.exc_info()[0])
 traceback.print_exc()
 break

 if actions <= 0:
 break

 #restore
 checkPos = check_pos_save
 #print(checkPos)
 return rtn, m1, idx

[docs]def try_error(m=None, file="", depth=0):
 """Try Error Method, only fill the first possible postion"""

 if file != "":
 m = Matrix(file=file)

 possibles = m.sort_unassigned_pos_by_possibles()
 done = False
 depth += 1

 m1 = copy.deepcopy(m)

 p1 = possibles[0]

 k = len(p1.possible)
 if k <= 0:
 #print("try#{0}: {1} has empty possible!".format(depth, p1))
 return False
 elif k == 1:
 #print("try#{0}: {1} has only one possible!, set it to {2}".format(depth, p1, p1.possible[0]))
 try:
 m1.setit(p1.x, p1.y, p1.possible[0], d="try")
 flag = try_error(m1, depth=depth)
 if flag:
 return True
 else:
 return False
 except SudokuDone:
 print(m1)
 return True
 except SudokuError:
 return False
 else:
 flag = False
 m2 = copy.deepcopy(m1)
 for v in p1.possible:
 try:
 if m1.allow(p1.x, p1.y, v):
 #print("try#{0}: {1} try set it to be {2} of {3}".format(depth, p1, v, p1.possible))
 m1.setit(p1.x, p1.y, v, d="try")
 flag = try_error(m1, depth=depth)
 if flag:
 return True
 else:
 m1 = copy.deepcopy(m2)
 continue
 else:
 #print("try#{0}: {1} is impossible to be set to be {2}".format(depth, p1, v))
 continue
 except SudokuDone as err:
 print(m1)
 done = True
 return True
 except SudokuError as err:
 m1 = copy.deepcopy(m2)
 continue
 if not flag:
 #print("try#{2}: {0} is not impossible to set any for {1}".format(p1, p1.possible, depth))
 # restore it and continue
 # m1 = copy.deepcopy(m)
 return False
 else:
 #print(p1, p1.v, p1.possible)
 return True

[docs]def guess(m, idx=0, first=0, only=False):
 """Guess Method"""

 global tryStack, tryIdx, Scope, Level

 # if start using tryMethod, set the level to the METHOD_LEVEL_LIMIT_WHENTRY
 Level = METHOD_LEVEL_LIMIT_WHENTRY

 Scope += 5 # it is easy as the method of write down possible
 if idx == 0: # Add New Try
 tryIdx += 1
 possibles = m.sort_unassigned_pos_by_possibles() # get all unassigned postion and sorted by the possibles number
 m1 = copy.deepcopy(m)
 p1 = possibles[0] # the first un-assigned postion
 x = p1.x;
 y = p1.y
 tryStack.append([m1, x, y, 0])
 print("Try Add: {0},{1} to set {2} of {3}".format(x, y, p1.possible[0], p1.possible))
 else:
 i = tryIdx - 1
 tryStack[i][3] = idx
 x = tryStack[i][1];
 y = tryStack[i][2]
 print("Try Idx={3}: {0},{1} to set {2} of {4}".format(x, y, m.p[x][y].possible[idx], idx, m.p[x][y].possible))

 v = m.p[x][y].possible[idx]
 m.setit(x, y, v, d="try")
 return 1, 0, METHOD_CHECK_OBVIOUS, v, SCAN_ALL_NUMBER

[docs]class SolveMethod():
 """Method Object"""
 lastNumber = 1

 def __init__(self, fun, idx, name="", level=0, obvious=True):
 self.fun = fun
 self.idx = idx
 self.name = name if name != "" else fun.__name__
 self.des = fun.__doc__
 self.level = level # the difficult level for human, can be set 0-9
 self.obvious = obvious

 def run(self, m, *args, **ks):
 return self.fun(m, *args, **ks)

[docs]def reg_method():
 """register all method as an object and save them into a list to return"""

 global tryUse, emuUse

 methods = []
 #methods.append(SolveMethod(fillOnlyOnePossible, 0, level=0))
 methods.append(SolveMethod(fill_last_position_of_group, 1, level=0))
 methods.append(SolveMethod(check_obvious_number, 2, level=1))
 methods.append(SolveMethod(check_line_last_possible_for_number, 3, level=2))
 methods.append(SolveMethod(check_inobvious_number, 4, level=3))
 methods.append(SolveMethod(reduce_by_group_number, 5, level=5))
 methods.append(SolveMethod(write_down_possible, 6, level=5))
 methods.append(SolveMethod(update_chain, 7, level=10))
 methods.append(SolveMethod(reduce_by_two_possible_in_one_position, 8, level=15))
 if emuUse:
 methods.append(SolveMethod(reduce_by_emulate_possible_in_one_position, 9, level=20))
 methods.append(SolveMethod(reduce_by_emulate_possible_number_in_group, 10, level=20))
 if tryUse:
 methods.append(SolveMethod(guess, 11, level=0))
 return methods

[docs]def solve(file, loop_limit=0, rec_limit=0, check=None, level_limit=0, emu_limits=2, use_try=METHOD_USE_TRY,
 use_emu=METHOD_USE_EMU):
 """Solve a sudoku which define in a file!
 loopLimit: the limit for the method loops, 0: no limits
 recLimit: when the records >= recLimit, it will stop, 0: no limits"""

 global methodLoopIdx # how many method loops it has taken
 global methodIdx # the method idx of now running
 global checkPos # setting the position want to check
 global writeDownAlready # if the every un-assigned positions have been writen down their possible number?
 global emulatePossibles # set the emulate possibles
 global tryStack, tryIdx, tryUse, Scope, emuUse
 global Level

 writeDownAlready = False
 checkPos = check
 methodLoopIdx = 0
 begin = time.time()
 m = Matrix(file=file)
 start = METHOD_CHECK_OBVIOUS # start from for the first time
 num = 1
 only = False
 Scope = 0
 max_method = 0
 tryIdx = 0
 tryUse = use_try
 emuUse = use_emu
 tryStack = []
 allmethods = reg_method()
 Level = level_limit

 while True:
 actions = 0
 methodLoopIdx += 1
 try:
 for method in allmethods[start:]:
 if 0 < Level < method.level:
 continue
 methodIdx = method.idx
 # every method have 5 return values:
 # sets: how many positions have been set
 # reduces: how many numbers have been reduced
 # start: which method will start to be used, default is 1
 # num: which number will be the first number to be procossed, for methods that look over all numbers
 # only: for methods which look over all numbers to process one only, which is the num
 sets, reduces, start, num, only = method.run(m, first=num, only=only)
 Scope = Scope + method.level
 max_method = max(max_method, method.idx)
 print("Try#{0}-{2}: {1}, sets={3}, reduces={4}".format(methodLoopIdx, method.name, methodIdx, sets,
 reduces))
 if sets > 0:
 rtn = fill_last_position_by_setting(m, sets)
 if rtn[0] > 0:
 start, first, only = rtn[2:]
 print(
 "Try#{0}-last: {1}, sets={3}, reduces={4}".format(methodLoopIdx, "LastPosition", methodIdx,
 rtn, reduces))
 sets = sets + rtn[0]
 if (sets > 0 or reduces > 0) and writeDownAlready:
 rtn = fill_only_one_possible(m)
 if rtn[0] > 0:
 sets = rtn[0]
 start, first, only = rtn[2:]
 print(
 "Try#{0}-only: {1}, sets={3}, reduces={4}".format(methodLoopIdx, "LastPossible", methodIdx,
 rtn, reduces))
 if DEBUG_MODE:
 if 0 < rec_limit <= len(m.rec):
 raise SudokuStop()
 if sets > 0 or reduces > 0:
 emulatePossibles = 2 # if any thing work, the emulatePossible set to the begin number
 actions = actions + sets + reduces
 break
 except SudokuDone as err:
 print("It is done by the last position({0},{1}) to set to be {2}!".format(err.x, err.y, err.v))
 break
 except SudokuStop:
 print("It is stop by the limit of recLimit set to {0}:".format(rec_limit))
 m.print_rec()
 break
 except SudokuWhenPosSet:
 print("It is stopped by the position({0}) be set! method={1}".format(checkPos, methodIdx))
 traceback.print_exc()
 break
 except SudokuError as err:
 if tryUse and tryIdx > 0:
 flag = False
 while tryIdx > 0:
 m1, x, y, idx = tryStack[tryIdx - 1]
 idx += 1
 if len(m1.p[x][y].possible) > idx:
 m = copy.deepcopy(m1)
 sets, reduces, start, num, only = guess(m, idx=idx)
 flag = True
 break
 else:
 tryIdx -= 1
 tryStack.pop(-1)
 if flag:
 continue
 print("It is impossible for {0}, {1} to set/reduce {2}! ({3})".format(err.x, err.y, err.v, err.t))
 traceback.print_exc()
 break
 except KeyboardInterrupt:
 traceback.print_exc()
 break

 if DEBUG_MODE:
 # for testing
 if methodLoopIdx == loop_limit:
 break

 if actions <= 0:
 if emulatePossibles < emu_limits:
 Scope += 1000
 emulatePossibles += 1
 print("Try emulate numbers = {0}".format(emulatePossibles))
 start = METHOD_EMULATE_START
 continue
 else:
 break

 print(m)
 if m.filled < 81:
 print("Can't solve it, still need {0} more effort!".format(81 - m.filled))
 else:
 print(
 "Done! good job, it takes {0}! Level={1}, Methods Used={2}".format(time.time() - begin, Scope, max_method))

 return m

 © Copyright 2014, Robert J. Hwang.
 Created using Sphinx 1.2.2.

_static/comment-bright.png

_images/result.png
6 352 47 981
8 42 931657
917658 342
57 3186 429
4 6 957 2813
28149 3576

3567241938
79831526 4
12 486 9 7 35

_static/file.png

_static/up.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		SudokuStudyLib 1.0 documentation »

 All modules for which code is available

		sudoku.sudoku

 © Copyright 2014, Robert J. Hwang.
 Created using Sphinx 1.2.2.

_static/plus.png

_images/p2.png

_static/down.png

_images/p4.png
xeway line

y-way line

_static/ajax-loader.gif

_images/p7.png

_static/up-pressed.png

_images/origin.png
6 3 0000O0O0SB81
8 40000057

00O0O0OS5O0O0O0ODO0
000106000
009000800
000403000

000020000
7 00 0O0O0O0TG6 4
100000O0O0S3S5

_static/down-pressed.png

_images/p6.png

_images/m3.png

_images/logo.jpg

search.html

 Navigation

 		
 index

 		
 modules |

 		SudokuStudyLib 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Robert J. Hwang.
 Created using Sphinx 1.2.2.

_images/p1.png
<[sudokulib (D:iworkspace'sudoky
-3 SudokustudyLib.egg-info
- C1build
- Cdist
=-Cldocs
o BT matrix
Cidata
& __init__py
[& matriz.py
[& testpy
= ETsudoku
Cidata
& __init__py
[& sudoku.py
[& test.py
i gitignore
[~ Bl CHANGES.xt
[~ El MANIFEST.in
I README.txt
B setup.ctg
[setup.py
L testpy

_images/p5.png

_images/p3.png
IE-EII
EIII

_images/flowchart.png
Create a simulate
World by a define file

Tnit all status

Put all methods to the
Brain

Method #1 —
not work
Method #2 T

not work

Method #3 [
not work
BRAIN
i]
Method #n L L

!

_static/minus.png

_static/comment.png

